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Nonresonant Perturbation Measurements on
Dispersion and Interaction Impedance
Characteristics of Helical
Slow-Wave Structures

S. J. Rao, S. Ghosh, P. K. Jain, and B. N. Basu

Abstract—A nonresonant perturbation (NRP) theory is de- extremely large bandwidth offered by a helical SWS is by
veloped from first principles for the measurement of dispersion far its most prominent claim to fame, and is unparalleled
and interaction impedance characteristics of a helical slow-wave by any other known SWS’s. The dispersion characteristics of
structure (SWS). The phase of the reflected signal from a test heli ired to be sh d b isotropicall d/
helical structure varies when a perturber, also in the form of a f"‘ elix are require O_ €s ape. y anisotropically and/or
helix, is moved along the axis of the test structure. The variation inhomogeneously loading the helix for a broad-band TWT
of phase with perturber position is interpreted to find the phase [1]-[4]. However, care must be taken to see that the method
velocity of the structure under test. The interaction impedance of dispersion shaping does not cause a large reduction in the
of the structure is found by measuring the change in the axial 516 of the interaction impedance of the structure, which in
phase-propagation constant of the structure as a dielectric rod - - -
is placed along the axis of the structure. For this purpose, first turn reduces the gain and efficiency of the device. More-
a ‘“resonant” perturbation formula is derived for interacton  Over, the method should not load the structure to such an
impedance which, with proper interpretation, is then extended to extent that it causes a substantial reduction in the RF phase
get a “nonresonant” perturbation formula in terms of the above velocity, and hence, in the corresponding beam accelerating
change in the axial phase-propagation constant. The formula voltage and power. Furthermore, it should not reduce the

shows an improvement over the first-order formula derived A . S
under “thin-rod approximations” in the form of a correction m-point frequency—the potential backward-mode oscillation

factor that takes into account the finite perturbation of the axial ~frequency—to a value below the upper edge of the desired
electric field inside the dielectric-rod perturber, the presence of amplification band [1]. Thus, the control of helix dispersion

a radial electric field, the nonuniformity of fields over the rod  ang impedance characteristics plays a significant role in the
cross section, and the space-harmonic effects. However, the TE-yoqjan of wide-band TWT's. Hence, this makes the experimen-
field contributions are considered to be insignificant, thereby | luati f a helical d “cold”
allowing one to ignore the presence of the azimuthal electric field. &l €valuation of a helical SWS—treated as a “cold” structure

Measurements are carried out with the help of an automated in the absence of an electron beam—uwith respect to these
setup using an HP 8510 vector network analyzer (VNA) and a characteristics, using a simple, efficient, and speedy technique,

PC to collect the phase informations for the various precisely crycially important from the TWT design and development
controlled positions of the perturber using a stepper motor, which considerations

is also interfaced with the PC. The experimental and theoretical .
values of the phase velocity and the interaction impedance of BOth the resonant perturbation (RP) [5] and the non-RP

a typical “cold” experimental helical structure for a wide-band (NRP) [6]-[10] techniques are in vogue for the experimental
TWT are found to be close within 0.5% and 5%, respectively, in characterization of SWS’s. However, for a helical SWS which

an octave band of 8-16 GHz. cannot be perfectly “shorted” at its ends to make it resonate,
Index Terms—Microwave measurement, nonresonant pertur- the NRP technique is more suitable than the RP technique [5].
bation, slow-wave structure, traveling-wave tube. The NRP technique as applied to the experimental characteri-

zation of helical structures has been reported in the literature,
for instance, by Legarra [6], Maharaj and Schumann [7],
o _ ~Onodera [8] and Wanet al. [9], [10].
I HE UNIQUE combination of the gain and bandwidth ag for the axial propagation constant, one may recall Steel’s
I offered by a traveling-wave tube (TWT) leaves it Unpasic theory [11] that relates the change in the complex
rivaled as an amplifier in microwave communication systeMggiection coefficient at the measurement port of a nonresonant
frequency agile wide-band electronic counter measure (ECMpicrowave cavity to the complex electric- and magnetic-field
and electronic coqnter-counter measure (ECC_?M) _systems. T&ﬁnponents at a given position on the cavity due to the
sub-assembly which demands utmost attention in the desigBertion of a perturbing object at that position [11]. By using
of a broad-band TWT is the slow-wave structure (SWS). Th§ee|'s theory, one may thus obtain a simple NRP formula for
Manuscript received November 15, 1996; revised May 19, 1997. the axial phase-propagation constant of a nonresonant helical
The authors are with the Centre of Research in Microwave Tubes, Detrycture in terms of the variation in the phase of the reflection
partment of Electronics Engineering, Institute of Technology, Banaras Hindu ffici ber i d al h .
University, Varanasi 221 005, India. coefficient as a perturber is moved along the structure axis
Publisher Item Identifier S 0018-9480(97)06062-6. (see Section Il). For interaction impedance, Lagerstrom [12]
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improved upon the original “first-order” formula based oM. Interaction Impedance Characteristics
“thin-rod approximations” not available in published literature, Horsley and Pearson [5] gave a method of obtaining the
though presented in unpublished internal reports [13]-{14p tormyla for interaction impedance. They evaluated the
This prompts us in this paper to give a deduction of the NRFrhed electric field inside the perturber and the transverse-
formula for interaction impedance from first principles removge|q effects by making electrostatic approximations. However,
ing such simplifying approximations for practical relevancgney ignored the variation of fields over the perturber cross
The approach used is to first deduce an RP formula followigtion Moreover, their theory referred to the measurement
the approach of Horsley and Pearson [5], who gave it fPro?. a plane-ladder SWS which can be relatively easily shorted
plane-ladder structure, and subsequently extend it to obtain theiis ends to form a resonant “cavity” suitable for RP
NRP formula for the present helical SWS (see Section II). measurements. Motivated by their work, we develop in this
A computer-governed automated measurement setup, USBer an NRP formula for interaction impedance from first
a vector network analyzer (VNA) and a stepper motor for thgincinles with particular reference to a helical SWS. The
precise control of the movement of a perturber is developgg, ach is to first deduce the RP formula for interaction
(see Section Ill) to collect the phase information as required ifpedance [5] and then extend it to get the NRP formula.
the formulas for the axial phase-propagation constant and fjfjjike Horsley and Pearson [5], no electrostatic assumptions
interaction impedance (see Section Il) of a typical experimeQse made for the evaluation of the perturbed electric- and
tal helical structure in the 8-16-GHz range for a wide-bangl,\qerse-field effects. The NRP formula, as will be seen,
TWT. Finally, the experimental results are compared Wit es an improvement over the first-order formula [12]-[14]
those predicted by theoretical analyses previously developgdhe form of a correction factor that accounts for: 1) the finite

by the authors [15]-{17] (see Section IV). perturbation of the axial electric field inside the dielectric-rod
perturber; 2) the presence of a radial electric field resulting
II. THEORY OF MEASUREMENT from TM field (nonzero axial electric field) contributions; 3)

The NRP formula for the axial phase-propagation constdf¢ nonuniformity of fields over the perturber cross section;
3 as required to study the dispersion characteristics of a heli@d 4) the space-harmonic effects due to the axial periodicity
structure is found by interpreting the variation of the phase 8f the structure. .
the reflected wave from the structure as a perturber is moved-€t us recall the following well-known RP formula for a
along the structure axis. As for the interaction impedance BRVity Of volumeV" in terms Of_va the change in the angular
the structure, first an RP formula is deduced, which by simgigauency of resonance [18]:
reasoning is then extended to obtain the desired NRP formula. PSRN A

g " /(é-D—E-d)dV—/(h-B—H-b)dV
. . - = = JV vV (4)
A. Dispersion Characteristics A
P w /(E-D—H-B)dV
v

Exploiting Steel's NRP theory [11], one may write the
changeAl’ (= |Al'[exp (j¢) in terms of its amplitud§Al'|  where the symbol#, H, D, and B represent the unperturbed
and phasep) in the reflection coefficient at the measuremendjectric-field intensity, magnetic-field intensity, electric-flux
port of a nonresonant cavity as propornpnal to a generahzaensity, and magnetic-flux density, respectively. The perturba-
field quantityp (= |p|exp (—j/3z) of amplitude|p| and axial tions in these quantities are represented by the corresponding
phase-propagation constafj at the perturber position, in  jower case symbols and the hats represent the amplitudes. If
the following form [6]: the relative permeability of the perturber is unity, one may

_ Ny a2 write h- B = H -b = poH - h in the cavity volume that makes
(AL =)|al exp (j¢)(= Cllp|exp (=82)]%) the second integral in the numerator of the RHS of (4) vanish,

= Olp|? exp (—j22) (1) enabling one to write
where C' is a constant of proportionality. Differentiating (1) A By i
. . . 4 : (¢-D—FE-d)dv
with respect toz and equating the imaginary part of its left- Aw _ Jv 5)
hand side (LHS) and right-hand side (RHS), one easily gets w / (E D1l B) av
3= 149 2 -
p= T 9dx (2) One may divide the volum¥ into the volumed/, andV -V,

whereV, represents the volume of the perturber, which in the

present context refers to a thin dielectric perturbing rod at the
2w axis of the helical structure. In view of this, one may choose

T T dp)d) ) to express (5) as

From the variation ofp with the perturber positiorr along / (e- D-E. 3) dv +/ (& D-E. 3) dv

the axis of the structure, one may finld/dz and, hence, ﬂ _ VY Vo

;3 from _(2) or v, fr.om (3_), as requireq for the experimental w /(E-D _ ﬁI-B) AV

evaluation of the dispersion characteristics of the structure (see ¥

Sections Il and IV). (6)

from where one may find the phase velocity(= w//j3) as
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In order to approximately estimate the distortion of field® be comprised of the axidl. and the radiaE’,, components
caused by a small perturbg¥,, < V'), one may use the usualand no azimuthal componet#,. In view of this, one may
approach of making the assumption that the perturbing objentpress (11) as
is placed in a region containing a replica of the original field Aw veoler—1) [
pattern—frozen in the unperturbed condition [12]. Under this — = —907”/ (ELE; +EEN)HdV.  (12)
approximation, in the perturber-free volurie— V,, one may w 8PL Vo

takee = d = 0 that makes the integrand in the first integral Though we have considered the space-harmonic effects later

of the numerator of the RHS of (6) vanish, giving in this analysis, let us at this stage assume that only the
A s zeroth-order nonazimuthally varying mode is perturbed by the
Aw A e-D-E-d)dav placement of the dielectric rod. For such a mode, considering
- = ——————— . (7) the axial electric-field intensity®, to be comprised of the
/ (F-D—H-B)dV forward and backward components each of the same amplitude

E., which form a standing wave in the cavity, one may express
Clearly, one may identify the denominator of the RHS of (7)12), as explained in Appendix A, in the following form:
as four times the total energyy’ stored in the unperturbed

Tp L
volume [5]. This enables one to write Aw __ vgmeo(er — 1) / / p1 cos® Bz Io{yr}
~ A w PL r=0J2=0
/(é-D—E-d)dV N A\ o
Aw _Jy, ®) < To{yrr + Wﬁ{w‘}h{’y r} )| EZ{0}r - drdz

w 4w

Representing the perturbed quantities by primed symbols, one

may pute = & — E andd = D' — D, and write the integrand whereL is the length of the rod and, its radius.I, and1, are

in (8) as the modified Bessel functions of the first kind and of orders
o a P A A s ~ ~ ~s 0and1, respectivelyy and~' are the unperturbed and the

¢D-E-d=(F -F)-D-E-(D-D)=E -D-E-D perturbed radial propagation constants given, respectively, by

(13)

which, on puttingD = <& and D' = e,e0, wheree, is v = (82 — woeo)/? = (B2 — k2)/2
the relative permittivity of the perturber, becomes
A R and

e-D-E.-d=—coe, - VE - E e

which, when substituted in (8), gives Y = (87 - wlnoeos,)? = ’7<1 - ?(Er - 1))
( 1)/E’ Eav e—1 \"?
EolEr — . — s+ 14
Aw v, ”(1 Bk = 1) (14)

= - . (©)

w 4W
_ 1/2y i _ ; _
One may choose to express (9) in terms of instantaned’y{gerek (= w(poeo)™/™) is the free-space propagation con
. . . ; ~ X " stant.p; is a factor relating the perturbed to the unperturbed
field intensites ' (= FE expj(wt — fz)) and E* (=

- I field as
Eexp—j(wt — 82)), so that one may tak&' - E = E' - E*.
This enables one to write (9) as E {0} =p E.{0} (15)
eo(e, —1) | E' -E*dV where the expression for, is given in Appendix B. The zero
Aw _ v, (10) in the parenthesis with the electric-field quantity refers to the
w aw value of the quantity at the axis = 0.
where the asterisk represents the complex conjugate. Taking _the resonant length as an integral multiple of half
In the present context of a helical SWS, let the structure §& the guide wavelengtlr /33, one gets
perturbed by a thin dielectric rod positioned along its axis all L(=r/8) I
along its length, the structure being considered as terminated / cos? Bz dz = 3
z=0

in shorting planes at its ends to form a resonant cavity. Putting
W =2UL = 2PL/v, whereU is the energy stored per unita result that can be used in (13) to get the RP expression for
length in each of the forward and backward traveling waves ihe interaction impedanc& (= E2{0}/(23%P)) as follows:

such a cavity,P (= Uv,) the power in a propagating mode,

and L the length of the dielectric-rod perturber, one may then K= —24w 5 (16)
express (10) as wivgmeo(e, — 1)ripy <p2 + Wp?’)
Aw  wgeole, — 1) P
o = ser SEEY O wnere
Supposing now that in the helical structure considered, the po = 32/ ’ rIo{yrHo{y'r} dr (17)
TM mode dominates over the TE mode, one may consitler Tp Jo
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and of space harmonics on the interaction impedance formula
9 [T may be estimated by referring to the results of tape-model
p3 = 7—2/ rly{yr}L{y'r} dr. (18) analysis for the helix [15]-[17]. For instance, in the presence
p 70 of space harmonics of ordetisl, one may writef, {0}
The evaluated expressions fgr, and ps; are given in

Appendix B. E{0} = E. o{0} + E. _1{0} + E. 1{0}. (23)

At this stage, one may extend the RP expression for tbﬁ)nsequenﬂy’ it can be shown with the help of (23) and
interaction imp_edance (16) toiits NRI_3 form using the foIIowin@]»,aking use of the orthogonality property of space harmonics
simple reasoning. A wave propagating through a nonresongqkr the volume of the perturber, that the basic RP expression
propagating structure will undergo a change in its axial phas(q3) then gets modified, shown in (24) at the bottom of the
propagation constant by an amoulti due to the placement page (see Appendix C), where the subscript 0 with prop-
of the dielectric perturbing rod at the structure axis. Thiggation constants referring to the zeroth-order fundamental

Change iS aCtUa”y nu”|f|ed in the RP Condition by Changingpace_harmonic mode. Here, the fac(é; is given by (See
the excitation frequency so that the “cavity” now resonates ajpgpendix C)

new angular frequency + Aw, thus introducing an additional ) )
change(93/dw)Aw in the axial phase-propagation constant. Gs=1+55_1+55, (25)

In other words, this means which may be expressed in the following generalized form:

ap
0=A0+ —Aw n n
o Go=14+3 S5+ 5, (26)
and when remembering that the structure has a group velocity q=1 q=1
vy (= Ow/0p), one getsdw = —v,(Af), which when i the presence of harmonicsl, +2, .-, 4n, where (see

substituted in (16) yields the following NRP expression fOAppendix C)
interaction impedance:

E. +,{0}

1 S === 2 27

K= < )Kﬁrst'order (19) 0.+ EZ70{0} ( )

p,nu,T
where is the relatived+qth space-harmonic axial electric-field am-
plitude at the structure axi§r = 0) that can be found by
Kerst-order = 200 (20) the theoretical analysis of the structure in the tape model

wreo(er — 1)12 [15]-[17].

is the first-order expression for interaction impedance [12] th In view of the above modification of (13), in the form of

would be obtained had the effects of the field perturbation a ), one rg_ay tt:er:\lf;gow the s_teps 1sgubtsequ$?r: to (13), a_nd
nonuniformity, as well as those of the radial electric fiel ’ence, modify the expression (19) to get the expression

' or the fundamental zeroth-order mode interaction impedance
been ignored. Here K, defined by (22) as follows:

B
p.nu, b1 <p2 + ’Y’Y’pg ( ) Ky = < ) <—>Kﬁrst'0rder (28)

Gp,nu,r Gs
is a correction factor that takes into account the above effeciﬁh . .
. ereG, ... 1S given by (21) in terms , P2, andps (the
It may be mentioned that the facta®,, ., does not porr 159 y (21) Oby, P2 P

. . ) expressions of which are given in Appendix B) which ma
include the space-harmonic effects which may now be Conslgespinterpreted for the zer031-order mgge, aigl is)given by y

ered as follows. In the presence of space harmonics other t . .
) through (27) (see Appendix C), amds,si_oraer D€ING
the zeroth-order fundamental, one may define the fundame%%in by (20) interpreting3 as f. It may be of interest

interaction impedancé, as to notice that (28) is identical with the first-order formula
[12]-[14] except for the two factor&s, . ., arising from

the finite perturbation and nonuniformity of fields and the
presence of a radial electric field in the perturber, d@hd
where Ezyo{o} is the amplitude of the zeroth-orderarising from the perturbation of space harmonics. Thus in (28),
fundamental-mode axial electric-field intensity at = 0, one gets an NRP formula for interaction impedance that gives
Bo is the corresponding axial phase-propagation constaah improvement over the first-order formula in the form of a
P has to be taken here as the power propagating down twrection facton(1/G,, »..»)(1/G5). At this stage it may be
structure over all the space harmonics of interest. The effeatgntioned that one could ignore the correction factors only

E2 {0}
232P

Ko = (22)

Aw vgmeo(e, —

e / /1 2 i)y 5 o} | | 2
2w _tmeoler = s cos? foz | Tofror} - Io{or} + 2 L {nor Iy {viyr} | | B2{0}r - dr dz (24
w 2PL ] preos” oz { Dotor} - Totoor} 2 2 Iihor i} | | B20) (24)
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Fig. 1. Automated experiment setup for NRP measurement of the dispersion and interaction impedance characteristics of a helical SWS.

for thin low-permittivity small-perturbation dielectric rods. 0-60
However, as could be seen from (20), this would demand that

for A to be discernible in the measurement, the valud{of

ought to be rather high. Therefore, this restriction Enin

wider practical situations calls for the incorporation of these 0-55 _
. ™ Theoretical [16]

correction factors. ~ ‘{\ sh
c o~ eath model
= T I - £ Tape model
‘o

Ill. EXPERIMENTAL SETUP ’;0‘50

>

A setup is developed to automate the sequence of mea-
surement on the dispersion and interaction impedance char-
acteristics of a helical SWS with nominal user intervention 0.45
(Fig. 1). An HP 8510 VNA is used to measure the phase of
the reflected signal from the SWS at various frequencies. The
phase changes when a perturber, in the form of a helix, is
moved along the axis of the test helical SWS. The precise Ry STy S—T A
positioning of the perturber along the axis of the SWS is f (GHz)
accomplished by a carriage assembly driven by a Step@?d. 2. A comparison between the theoretical and measured dispersion
motor. The carriage has a provision for holding the SWS anblaracteristics of a typical experimental helical SWS of a TWT.
centering the perturber. The VNA is controlled by a PC via
an |IEEE-488 bus. The stepper motor is also interfaced on
the centronix parallel port of the PC. A code is developdoehaves effectively throughout the frequency range of interest
to control the measurement sequence in which the compuded is commensurate with the bandwidth of the test structure.
automatically collects the phase information of the reflecteds in Legarra [6], we have used here in the measurement a
signal at the various positions of the perturber precisehgelical perturber. One important consideration in the design
controlled by the stepper motor. The PC collects and storesa wide-band helical perturber is its optimum length for
the data over a range of user-specified frequencies. Also, theximum power transfer, which should be constant with
computer is programmed to take another set of measuremdngguency [6], [8]. The deciding factors essentially are the
on the helical SWS now loaded with a dielectric rod at itseparation between the test helix structure and the perturber
axis. The data stored in the PC are then processed making luskx, the relative permittivities of the materials present in the
of the NRP formulas developed in Section Il to directly plohelical structure—perturber assembly, their dimensions includ-
the dispersion and the interaction impedance characteristicsrgf the ratio of the structure-to-perturber cotangents of helix
the helical SWS (see Figs. 2 and 3). pitch angle, the latter essentially being a negative quantity

The design of the perturber used in the present measurement—0.98) corresponding to contra-wound coupled helixes
needs to be given special consideration taking care thaf8i, [19], [20]. Typically, a perturber helix of three turns of

llll]lIIlI!llIllrllII1III|I!I|II||IIII
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pyrolytic boron nitroide (APBN) (relative permittivitys 5.1),
{i\ rectangular support bars (thickness0.59 mm) enclosed in
Qx\r\_rnemencm (161 a metal envelope (radius 1.78 mm). The measurement is
\\\ Sheath model carried out using an automated computer-aided measurement
\\/— setup (see Section IlI).
\ Tape model
> Ignoring The experimental values of phase velocity closely agree
spacg_hacmonics (within ~0.5%) with the theoretical values predicted by
_ the author’s previously published analysis [15]-[17], over
spaces o ics a frequency range of 8-16 GHz (Fig. 2). As for interaction
eftect impedance, the first-order NRP formula is improved upon—in
the first step, by taking into account the finite perturbation
of the axial electric field inside the dielectric-rod perturber,
the presence of a radial electric field, and the nonuniformity
~ > of fields over the rod cross section, and in the next step,
0.0 E et e e " also by taking into account the perturbation of the space
9.0 13.0 17.0 harmonics of orders: 1, & 2, and+ 3, besides the zeroth-
f (GHz) order fundamental, beyond which the results do not improve
Fig. 3. Experimental interaction impedance characteristics with and withoﬁppreCI_ablx further (see Secuon l_l)' The measured values of
the correction factor compared with theory. Solid lines with circles antditeraction impedance using the first-order formula and those
rectangles: inclusion and exclusion of the space harmonics, respectivelyyising the same but improved by the two correction factors, as
the correiglr:)r;afcatgtror. Solid line with triangles: experimental values WlthOlﬁel’ the above steps, are compared with the theoretical values
2 coree ' (Fig. 3). The experimental values of interaction impedance
as found using the first-order formula appreciably differ
) ) ) (maximum ~ 30%) from the theoretical values found by
fjlameter equ_al to half the inner dlametc_er of the test helige author's analysis reported elsewhere [16], [17], more so
is found to give a broad-band perturbation. Furthermore, @ o\er frequencies. However, the agreement becomes much
good match between the helix terminal and the connectipgqar (within ~ 29%) when both the correction factors are
cable of the VNA is essential for accurate measurements. Thgan into account (Fig. 3). It may be further noted that the
test structure used shows a VSWR between 1.2-1.8 over {8,sion of the correction factor due to the space harmonics
8-16-GHz band, which is improved further to give a VSWR,yers the value of the interaction impedance, though not to

of ~ 1.05 using an additional triple-stub tuner, the residual, gppreciable extent (Fig. 3), as also has been observed by
mismatch being subtracted in the VNA during measureme%ng et al [9]. It is, however, felt that this factor would

by calibrating the VNA with the helix assembly taken as g5 se an appreciable effect for large helix pitch angles, a

matched load. _ _ . heavy loading of the helix, say, by a high permittivity or a
In order to measure the dispersion characteristics, the phasey ‘dielectric support, and at high operating frequencies.

variation of the reflected signal as the perturber positionis

changed, is used to obtain the value(@$/dz), which in turn

gives the value off and v, using (2) and (3), respectively,

at specified frequencies (Fig. 2). In order to evaluate the V. CONCLUSIONS

interaction impedance of the structure, the measurement isl'his paper reports an automatic measurement setup for the

repeated after loading the helix by a thin dielectric rod at itﬁ1 A

axis. For this purpose. a alass rod of diameter 0.85 mm a% racterization of nonresonant structures. The background
i burpose, a g ' P theory of measurement for this purpose is developed

relative permittivity 5.4 is used. Instead of sliding the perturb(=f\rrOm first principles. The formula deduced for interaction

helix over the glass rod, the former is fixed on the Iattelrl’npedance takes into account the perturbation of the axial field

and the whole moved along the axis of the test helix taklnﬁside the dielectric-rod perturber, the presence of a radial

care that both the ends of the glass rod remain outside &l&ctric field, the nonuniformity of fields over the rod cross
helix, to ensure that the end effects are avoided [12]. The new ' Y

loaded axial propagation constant sa@¥, thus found gives section, and also the perturbation of the space harmonics. The

AB (= B — A), which in tumn is used in (19), (20), and (Zg)experlmental results are validated agamst_ theory. It may be
) . o ._‘mentioned that there is a scope further to improve the results
to plot the experimental interaction impedance characteristics . T o .
. . S on interaction impedance by eliminating the effect of TE-field
of the test helical SWS (Fig. 3). The repeatabilities in the .~ . . .
. : . o contributions in the measurement [12]. This could be done by
measurement on dispersion and interaction impedance are _ . . L . .
) repeating the experiment by a metal rod in lieu of a dielectric-
found as~ 0.2% and~ 2%, respectively. -
rod perturber, and subsequently combining the results of the
dielectric- and metal-rod experiments [12]. It is hoped that
the NRP theory and the measurement technique based thereon
The structure under test consists of a helix (mean radiusand developed in this paper, should be useful in the design
1.09 mm, outer radius- 1.18 mm, tape width= 0.76 mm, and characterization of helical structures—for instance, those

pitch angle=10.32) supported by three identical anisotropiaised by tube developers in wide-band TWT's.

60-0

40.0

K (ohm)

20-0

Without
correction factor
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APPENDIX A Now, putting the element of volumé\” = 27r dr dz in (A.7)
INTEGRAL FORM OF RESONANT PERTURBATION EXPRESSION  and taking the integration extended over the volume of the

For the zeroth-order nonazimuthally varying mode, one m&frturbing rod between = 0 andr = r, (rod radius) and

write for fields inside the perturber [12] as follows: z=0andz = L (rod length), one obtains the RP expression
shown in (13).
E. = E.{0}Io{yr} exp j(wt — f2)
E. = E {0} o{~'r} exp j(wt — 32) APPENDIX B
i3 iB I . EXPRESSIONS FORp1,p2, AND p3
By =98 B {0} fyr}exp j(wt — 2y = 2B _ ,
v v lo{vyr} Expression fop; = £.{0}/E£.{0} may be found from the
and boundary-value problem of the helix internally loaded by a
) ) ) coaxial dielectric-rod perturber. For a nonazimuthally varying
E = ﬁE/ {0} {y'r} exp j(wt — B2) = IB LAY} b mode, the relevant field expressions are [12]
Ty v Io{yr} "
(A1) E.q =A1Io{y'r} (B.1)
. . . E.p = Aslo{yr} + BaKo{yr} (B.2)
wherel, andI; are the modified Bessel functions of the first jweoe, )
kind and of orders 0 and 1, respectively. The prime refers to Hy = v Ali{y'r} (B.3)
the perturbed quantities. jweo
Substituting £, and E.. from (A.1), andE* and E?, also Hyo = > (Aol {vyr} — Bo Ky {vyr}), (B.4)

obtainable from (A.1), into (12) one may then write
Aw voeoler — 1) where the subscript 1 refers to the region inside the dielectric
—— :_907”/ E.E? perturbing rod and subscript 2 refers to the region between
w 8PL Vi the rod and the helix treated as a “helical sheath” in the well-
' <1 n B Li{yr}L{y'r} known sheath-helix modeld and B are the field constants.
vy Io{yr}lo{y'r} Now, if it is assumed that the dielectric-rod perturber is

. “frozen” in the unperturbed condition, one may fi€l {0}
Now, taking £ to be composed of the forward and backward;e unperturbed axial electric-field intensity rat= 0, as the

waves of t_he same amplitude. which form a standing wave field intensity £., “stretched” up tor = 0. Thus, with the
in the cavity, one may represef, as help of (B.2), in whichB, now has to be interpreted as zero

) av.  (A2)

E. =E_(expj(wt — Bz) + exp j(wt + 2)) so that the field does not blow up at= 0 where the function
=2F, cos Bz exp (jwt) (A.3) Ko{yr} — oo, one gets
E.{0} = A,. (B.5)

from where one may write
The perturbed field intensity” {0} is obtained as the field

/ al P
E' = 2F' cos Bz exp (jwt) (A4) intensity £., taken atr = 0 and is given with the help of
and (B.1) as
B* — 35, oo B exp (— o) (AS5) EL{0} = A;. (B.6)
Substituting (A.4) and (A.5) into (A.2), one gets py is then identified with the help of (B.5) and (8.6) as
E{0} A
Aw vgeoler — 1 Al =5 T Ay 8.7
W :‘% A E.E. cos® Bz "TE{0 T 4 o

B2 L{yrY L {~y'r} In order to find the ratiod; /4, one may take help from
' <1 T -~ _70{,77,}_70{,7_/7,}> dv. (A-6)  the following two boundary conditions at= p, the interface

between the dielectric rod and the free-space region outside
Assuming that the perturbing object is placed in a region gfe dielectric

the original field “frozen” in the unperturbed condition [12], as

discussed following (6), one may relate the perturbed quantity (Ez)r=b = (Ez2)r=b (B.8)
E7{0}, to the corresponding unperturbed quanfiy{0}, both

taken at the structure axis = 0, by a factorp; (15). The

expression forp; is given in Appendix B. With the help of (Heo1)r=b = (He2)r=s- (B.9)
(15) and (A.1), one may then express (A.6) as Substituting (B.1)—(B.4) into (B.8) and (B.9), one gets

Aw vgeo(er — 1) 2 /

—_— = p1cos” Bz Ip{yr} A Io{y'rp} = Aclo{yrp} + BaKo{yrp}

W 2PL Vp

W+ S| ey
Aoy T — ATy T z : JWoE Ep Jwe
L4 PO ALy} = P20 (e ry} = BaKa{my))

(A7) 5
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respectively, from which one may eliminat# to get the ratio factor exp (—j/5%), where z corresponds to a point moving
A1/As> which is equal top;, as can be seen from (B.7). Thusalong the center line of the tape. Then directly from the tape-

we have helix analysis [15]-[17], the following relation is obtained for
A a helix surrounded by a dielectric tube of an effective relative
4 <= A_2> permittivity /. into which the discrete dielectric support rods

1 for the helix could be azimuthally smoothed out, the whole
= enclosed in a metal envelope:

wv(Kﬂvn&h{V%}+ﬁ%&ﬁbhﬂﬁh%Wp0

’V:QI:qK:I:q{’V:I:qa} <Sin1/) - w>
The expression folp, and ps given by (17) and (18), Sotq = . : TEq®
respectively, after evaluation of the definite integrals occurring Yo Kofroa} siny
therein, are [12] Fygsin(B16/2) Po C3)
p Fy sin(foé/2) P+ '
—7T SR AP 211{7 TP} 1 1
P2 = 0{’77P} 0{,7 7} 7/7)])-[0{’7/7’])} e — 1 where
. (1)2< 201 {y'rp} _ 201 {yrp} >:| L= |:1 _ I:I:q{'V:I:qCL}K:I:q{'V:I:qC}:|
k72 A\Arplo{a'rp} yrplodyrp} ! Kiq{vqat Lrq{v2qc}

and [

1= (e - 1)'7ﬂ:qalﬂ:q{'7ﬂ:qa}K;:q{'7ﬂ:qa}
3 = To{yrp Ho{y'rp} { 21 {~'rp} 201 {yrp} }

{er =1} [vrplo{ympt  Arplofymy} 1 Ly 0 Kag {7400} B
U Kl {0t e {vqc)
APPENIDX C Ip{ iéKf }q !
Yol 01Y0C
E s Fy= [1 — 017070 }
. | XI.DBES-SIOITI FORQ . 0 Kolvoa} o{0ct
Considerable simplification is achieved if it is assumed that ) )
the quantity under the third bracket in the integrand of (24) : {1 — (& = Dvalo{va}Ki{yoa}
would not change from harmonic to harmonic, though now ) 1
E.{0} is comprised of harmonick 1, say, in addition to the . <1 _ Io{’Yoa}Ko{’YoC}ﬂ
zeroth-order fundamental as given by (23). Thus, in view of Ki{voatlo{voc}
(23), one may write the integral Ve = (B, — KD)Y2, o= (B2 — K2)Y?

/ Ef{o} dv :/ (EZ,O{O} + Ez,—l{o} + EAZJ{O})‘Z AV andfi, = By £qcot/a, 9 anda being the helix pitch angle

Ve Vo and mean radius, respectively, andhe metal envelope radius.

I+, and K4, are the modified Bessel functions of the first and

second kinds of ordet-q, respectively, and the primes denote
R R R R their derivatives with respect to arguments.

+2/V (B2 0{0} B2 1 {0} + 2 0{0} E21{0} S, .., and hence?,, being independent of volume of the

— [ (E200}+ B2 {0} + E2, (0D do
€

o R perturber may be taken outside the integral in the RHS of
+ E. —1{0}£. 1{0}) dV. (C.1) (C.2) enabling one to write
Thg seconq integral of (C.1) vamshe; in view of the orthogo- EAZQ{O} av =G, EAZQO{O} av. (C.4)
nality relation of space harmonics, giving v, :

/ E2{0} de/ (B2 ,{0} + E2_, {0} + E£2 {0})dV  Therefore, in view of (C.4), the RP expression (13) gets
v, v, ’ ’ modified as (24) [as discussed, following (23)].

. )
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