
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 9, SEPTEMBER 1997 1585

Nonresonant Perturbation Measurements on
Dispersion and Interaction Impedance

Characteristics of Helical
Slow-Wave Structures

S. J. Rao, S. Ghosh, P. K. Jain, and B. N. Basu

Abstract—A nonresonant perturbation (NRP) theory is de-
veloped from first principles for the measurement of dispersion
and interaction impedance characteristics of a helical slow-wave
structure (SWS). The phase of the reflected signal from a test
helical structure varies when a perturber, also in the form of a
helix, is moved along the axis of the test structure. The variation
of phase with perturber position is interpreted to find the phase
velocity of the structure under test. The interaction impedance
of the structure is found by measuring the change in the axial
phase-propagation constant of the structure as a dielectric rod
is placed along the axis of the structure. For this purpose, first
a “resonant” perturbation formula is derived for interaction
impedance which, with proper interpretation, is then extended to
get a “nonresonant” perturbation formula in terms of the above
change in the axial phase-propagation constant. The formula
shows an improvement over the first-order formula derived
under “thin-rod approximations” in the form of a correction
factor that takes into account the finite perturbation of the axial
electric field inside the dielectric-rod perturber, the presence of
a radial electric field, the nonuniformity of fields over the rod
cross section, and the space-harmonic effects. However, the TE-
field contributions are considered to be insignificant, thereby
allowing one to ignore the presence of the azimuthal electric field.
Measurements are carried out with the help of an automated
setup using an HP 8510 vector network analyzer (VNA) and a
PC to collect the phase informations for the various precisely
controlled positions of the perturber using a stepper motor, which
is also interfaced with the PC. The experimental and theoretical
values of the phase velocity and the interaction impedance of
a typical “cold” experimental helical structure for a wide-band
TWT are found to be close within 0.5% and 5%, respectively, in
an octave band of 8–16 GHz.

Index Terms—Microwave measurement, nonresonant pertur-
bation, slow-wave structure, traveling-wave tube.

I. INTRODUCTION

T HE UNIQUE combination of the gain and bandwidth
offered by a traveling-wave tube (TWT) leaves it un-

rivaled as an amplifier in microwave communication systems,
frequency agile wide-band electronic counter measure (ECM),
and electronic counter-counter measure (ECCM) systems. The
sub-assembly which demands utmost attention in the design
of a broad-band TWT is the slow-wave structure (SWS). The

Manuscript received November 15, 1996; revised May 19, 1997.
The authors are with the Centre of Research in Microwave Tubes, De-

partment of Electronics Engineering, Institute of Technology, Banaras Hindu
University, Varanasi 221 005, India.

Publisher Item Identifier S 0018-9480(97)06062-6.

extremely large bandwidth offered by a helical SWS is by
far its most prominent claim to fame, and is unparalleled
by any other known SWS’s. The dispersion characteristics of
a helix are required to be shaped by anisotropically and/or
inhomogeneously loading the helix for a broad-band TWT
[1]–[4]. However, care must be taken to see that the method
of dispersion shaping does not cause a large reduction in the
value of the interaction impedance of the structure, which in
turn reduces the gain and efficiency of the device. More-
over, the method should not load the structure to such an
extent that it causes a substantial reduction in the RF phase
velocity, and hence, in the corresponding beam accelerating
voltage and power. Furthermore, it should not reduce the

-point frequency—the potential backward-mode oscillation
frequency—to a value below the upper edge of the desired
amplification band [1]. Thus, the control of helix dispersion
and impedance characteristics plays a significant role in the
design of wide-band TWT’s. Hence, this makes the experimen-
tal evaluation of a helical SWS—treated as a “cold” structure
in the absence of an electron beam—with respect to these
characteristics, using a simple, efficient, and speedy technique,
crucially important from the TWT design and development
considerations.

Both the resonant perturbation (RP) [5] and the non-RP
(NRP) [6]–[10] techniques are in vogue for the experimental
characterization of SWS’s. However, for a helical SWS which
cannot be perfectly “shorted” at its ends to make it resonate,
the NRP technique is more suitable than the RP technique [5].
The NRP technique as applied to the experimental characteri-
zation of helical structures has been reported in the literature,
for instance, by Legarra [6], Maharaj and Schumann [7],
Onodera [8] and Wanget al. [9], [10].

As for the axial propagation constant, one may recall Steel’s
basic theory [11] that relates the change in the complex
reflection coefficient at the measurement port of a nonresonant
microwave cavity to the complex electric- and magnetic-field
components at a given position on the cavity due to the
insertion of a perturbing object at that position [11]. By using
Steel’s theory, one may thus obtain a simple NRP formula for
the axial phase-propagation constant of a nonresonant helical
structure in terms of the variation in the phase of the reflection
coefficient as a perturber is moved along the structure axis
(see Section II). For interaction impedance, Lagerstrom [12]
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improved upon the original “first-order” formula based on
“thin-rod approximations” not available in published literature,
though presented in unpublished internal reports [13]–[14].
This prompts us in this paper to give a deduction of the NRP
formula for interaction impedance from first principles remov-
ing such simplifying approximations for practical relevance.
The approach used is to first deduce an RP formula following
the approach of Horsley and Pearson [5], who gave it for a
plane-ladder structure, and subsequently extend it to obtain the
NRP formula for the present helical SWS (see Section II).

A computer-governed automated measurement setup, using
a vector network analyzer (VNA) and a stepper motor for the
precise control of the movement of a perturber is developed
(see Section III) to collect the phase information as required in
the formulas for the axial phase-propagation constant and the
interaction impedance (see Section II) of a typical experimen-
tal helical structure in the 8–16-GHz range for a wide-band
TWT. Finally, the experimental results are compared with
those predicted by theoretical analyses previously developed
by the authors [15]–[17] (see Section IV).

II. THEORY OF MEASUREMENT

The NRP formula for the axial phase-propagation constant
as required to study the dispersion characteristics of a helical

structure is found by interpreting the variation of the phase of
the reflected wave from the structure as a perturber is moved
along the structure axis. As for the interaction impedance of
the structure, first an RP formula is deduced, which by simple
reasoning is then extended to obtain the desired NRP formula.

A. Dispersion Characteristics

Exploiting Steel’s NRP theory [11], one may write the
change in terms of its amplitude
and phase in the reflection coefficient at the measurement
port of a nonresonant cavity as proportional to a generalized
field quantity of amplitude and axial
phase-propagation constant at the perturber position, in
the following form [6]:

(1)

where is a constant of proportionality. Differentiating (1)
with respect to and equating the imaginary part of its left-
hand side (LHS) and right-hand side (RHS), one easily gets

(2)

from where one may find the phase velocity as

(3)

From the variation of with the perturber position along
the axis of the structure, one may find and, hence,

from (2) or from (3), as required for the experimental
evaluation of the dispersion characteristics of the structure (see
Sections III and IV).

B. Interaction Impedance Characteristics

Horsley and Pearson [5] gave a method of obtaining the
RP formula for interaction impedance. They evaluated the
perturbed electric field inside the perturber and the transverse-
field effects by making electrostatic approximations. However,
they ignored the variation of fields over the perturber cross
section. Moreover, their theory referred to the measurement
on a plane-ladder SWS which can be relatively easily shorted
at its ends to form a resonant “cavity” suitable for RP
measurements. Motivated by their work, we develop in this
paper an NRP formula for interaction impedance from first
principles with particular reference to a helical SWS. The
approach is to first deduce the RP formula for interaction
impedance [5] and then extend it to get the NRP formula.
Unlike Horsley and Pearson [5], no electrostatic assumptions
are made for the evaluation of the perturbed electric- and
transverse-field effects. The NRP formula, as will be seen,
gives an improvement over the first-order formula [12]–[14]
in the form of a correction factor that accounts for: 1) the finite
perturbation of the axial electric field inside the dielectric-rod
perturber; 2) the presence of a radial electric field resulting
from TM field (nonzero axial electric field) contributions; 3)
the nonuniformity of fields over the perturber cross section;
and 4) the space-harmonic effects due to the axial periodicity
of the structure.

Let us recall the following well-known RP formula for a
cavity of volume in terms of , the change in the angular
frequency of resonance [18]:

(4)

where the symbols , , , and represent the unperturbed
electric-field intensity, magnetic-field intensity, electric-flux
density, and magnetic-flux density, respectively. The perturba-
tions in these quantities are represented by the corresponding
lower case symbols and the hats represent the amplitudes. If
the relative permeability of the perturber is unity, one may
write in the cavity volume that makes
the second integral in the numerator of the RHS of (4) vanish,
enabling one to write

(5)

One may divide the volume into the volumes and
where represents the volume of the perturber, which in the
present context refers to a thin dielectric perturbing rod at the
axis of the helical structure. In view of this, one may choose
to express (5) as

(6)
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In order to approximately estimate the distortion of fields
caused by a small perturber , one may use the usual
approach of making the assumption that the perturbing object
is placed in a region containing a replica of the original field
pattern—frozen in the unperturbed condition [12]. Under this
approximation, in the perturber-free volume one may
take that makes the integrand in the first integral
of the numerator of the RHS of (6) vanish, giving

(7)

Clearly, one may identify the denominator of the RHS of (7)
as four times the total energy stored in the unperturbed
volume [5]. This enables one to write

(8)

Representing the perturbed quantities by primed symbols, one
may put and , and write the integrand
in (8) as

which, on putting and , where is
the relative permittivity of the perturber, becomes

which, when substituted in (8), gives

(9)

One may choose to express (9) in terms of instantaneous
field intensities and

, so that one may take .
This enables one to write (9) as

(10)

where the asterisk represents the complex conjugate.
In the present context of a helical SWS, let the structure be

perturbed by a thin dielectric rod positioned along its axis all
along its length, the structure being considered as terminated
in shorting planes at its ends to form a resonant cavity. Putting

where is the energy stored per unit
length in each of the forward and backward traveling waves in
such a cavity, the power in a propagating mode,
and the length of the dielectric-rod perturber, one may then
express (10) as

(11)

Supposing now that in the helical structure considered, the
TM mode dominates over the TE mode, one may consider

to be comprised of the axial and the radial components
and no azimuthal component . In view of this, one may
express (11) as

(12)

Though we have considered the space-harmonic effects later
in this analysis, let us at this stage assume that only the
zeroth-order nonazimuthally varying mode is perturbed by the
placement of the dielectric rod. For such a mode, considering
the axial electric-field intensity to be comprised of the
forward and backward components each of the same amplitude

, which form a standing wave in the cavity, one may express
(12), as explained in Appendix A, in the following form:

(13)

where is the length of the rod and its radius. and are
the modified Bessel functions of the first kind and of orders
0 and 1, respectively. and are the unperturbed and the
perturbed radial propagation constants given, respectively, by

and

(14)

where is the free-space propagation con-
stant. is a factor relating the perturbed to the unperturbed
field as

(15)

where the expression for is given in Appendix B. The zero
in the parenthesis with the electric-field quantity refers to the
value of the quantity at the axis .

Taking the resonant length as an integral multiple of half
of the guide wavelength , one gets

a result that can be used in (13) to get the RP expression for
the interaction impedance as follows:

(16)

where

(17)
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and

(18)

The evaluated expressions for and are given in
Appendix B.

At this stage, one may extend the RP expression for the
interaction impedance (16) to its NRP form using the following
simple reasoning. A wave propagating through a nonresonant
propagating structure will undergo a change in its axial phase-
propagation constant by an amount due to the placement
of the dielectric perturbing rod at the structure axis. This
change is actually nullified in the RP condition by changing
the excitation frequency so that the “cavity” now resonates at a
new angular frequency , thus introducing an additional
change in the axial phase-propagation constant.
In other words, this means

and when remembering that the structure has a group velocity
, one gets , which when

substituted in (16) yields the following NRP expression for
interaction impedance:

- (19)

where

- (20)

is the first-order expression for interaction impedance [12] that
would be obtained had the effects of the field perturbation and
nonuniformity, as well as those of the radial electric field,
been ignored. Here

(21)

is a correction factor that takes into account the above effects.
It may be mentioned that the factor does not

include the space-harmonic effects which may now be consid-
ered as follows. In the presence of space harmonics other than
the zeroth-order fundamental, one may define the fundamental
interaction impedance as

(22)

where is the amplitude of the zeroth-order
fundamental-mode axial electric-field intensity at ,

is the corresponding axial phase-propagation constant.
has to be taken here as the power propagating down the

structure over all the space harmonics of interest. The effects

of space harmonics on the interaction impedance formula
may be estimated by referring to the results of tape-model
analysis for the helix [15]–[17]. For instance, in the presence
of space harmonics of orders1, one may write

(23)

Consequently, it can be shown with the help of (23) and
making use of the orthogonality property of space harmonics
over the volume of the perturber, that the basic RP expression
(13) then gets modified, shown in (24) at the bottom of the
page (see Appendix C), where the subscript 0 with prop-
agation constants referring to the zeroth-order fundamental
space-harmonic mode. Here, the factor is given by (see
Appendix C)

(25)

which may be expressed in the following generalized form:

(26)

in the presence of harmonics , where (see
Appendix C)

(27)

is the relative th space-harmonic axial electric-field am-
plitude at the structure axis that can be found by
the theoretical analysis of the structure in the tape model
[15]–[17].

In view of the above modification of (13), in the form of
(24), one may then follow the steps subsequent to (13), and
hence, modify the NRP expression (19) to get the expression
for the fundamental zeroth-order mode interaction impedance

defined by (22) as follows:

- (28)

where is given by (21) in terms of , , and (the
expressions of which are given in Appendix B) which may
be interpreted for the zeroth-order mode, andis given by
(26) through (27) (see Appendix C), and being
given by (20) interpreting as . It may be of interest
to notice that (28) is identical with the first-order formula
[12]–[14] except for the two factors , arising from
the finite perturbation and nonuniformity of fields and the
presence of a radial electric field in the perturber, and,
arising from the perturbation of space harmonics. Thus in (28),
one gets an NRP formula for interaction impedance that gives
an improvement over the first-order formula in the form of a
correction factor . At this stage it may be
mentioned that one could ignore the correction factors only

(24)
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Fig. 1. Automated experiment setup for NRP measurement of the dispersion and interaction impedance characteristics of a helical SWS.

for thin low-permittivity small-perturbation dielectric rods.
However, as could be seen from (20), this would demand that
for to be discernible in the measurement, the value of
ought to be rather high. Therefore, this restriction onin
wider practical situations calls for the incorporation of these
correction factors.

III. EXPERIMENTAL SETUP

A setup is developed to automate the sequence of mea-
surement on the dispersion and interaction impedance char-
acteristics of a helical SWS with nominal user intervention
(Fig. 1). An HP 8510 VNA is used to measure the phase of
the reflected signal from the SWS at various frequencies. The
phase changes when a perturber, in the form of a helix, is
moved along the axis of the test helical SWS. The precise
positioning of the perturber along the axis of the SWS is
accomplished by a carriage assembly driven by a stepper
motor. The carriage has a provision for holding the SWS and
centering the perturber. The VNA is controlled by a PC via
an IEEE-488 bus. The stepper motor is also interfaced on
the centronix parallel port of the PC. A code is developed
to control the measurement sequence in which the computer
automatically collects the phase information of the reflected
signal at the various positions of the perturber precisely
controlled by the stepper motor. The PC collects and stores
the data over a range of user-specified frequencies. Also, the
computer is programmed to take another set of measurements
on the helical SWS now loaded with a dielectric rod at its
axis. The data stored in the PC are then processed making use
of the NRP formulas developed in Section II to directly plot
the dispersion and the interaction impedance characteristics of
the helical SWS (see Figs. 2 and 3).

The design of the perturber used in the present measurement
needs to be given special consideration taking care that it

Fig. 2. A comparison between the theoretical and measured dispersion
characteristics of a typical experimental helical SWS of a TWT.

behaves effectively throughout the frequency range of interest
and is commensurate with the bandwidth of the test structure.
As in Legarra [6], we have used here in the measurement a
helical perturber. One important consideration in the design
of a wide-band helical perturber is its optimum length for
maximum power transfer, which should be constant with
frequency [6], [8]. The deciding factors essentially are the
separation between the test helix structure and the perturber
helix, the relative permittivities of the materials present in the
helical structure–perturber assembly, their dimensions includ-
ing the ratio of the structure-to-perturber cotangents of helix
pitch angle, the latter essentially being a negative quantity
( 0.98) corresponding to contra-wound coupled helixes
[8], [19], [20]. Typically, a perturber helix of three turns of
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Fig. 3. Experimental interaction impedance characteristics with and without
the correction factor compared with theory. Solid lines with circles and
rectangles: inclusion and exclusion of the space harmonics, respectively, in
the correction factor. Solid line with triangles: experimental values without
a correction factor.

diameter equal to half the inner diameter of the test helix
is found to give a broad-band perturbation. Furthermore, a
good match between the helix terminal and the connecting
cable of the VNA is essential for accurate measurements. The
test structure used shows a VSWR between 1.2–1.8 over the
8–16-GHz band, which is improved further to give a VSWR
of 1.05 using an additional triple-stub tuner, the residual
mismatch being subtracted in the VNA during measurements
by calibrating the VNA with the helix assembly taken as a
matched load.

In order to measure the dispersion characteristics, the phase
variation of the reflected signal as the perturber positionis
changed, is used to obtain the value of , which in turn
gives the value of and using (2) and (3), respectively,
at specified frequencies (Fig. 2). In order to evaluate the
interaction impedance of the structure, the measurement is
repeated after loading the helix by a thin dielectric rod at its
axis. For this purpose, a glass rod of diameter 0.85 mm and
relative permittivity 5.4 is used. Instead of sliding the perturber
helix over the glass rod, the former is fixed on the latter,
and the whole moved along the axis of the test helix taking
care that both the ends of the glass rod remain outside the
helix, to ensure that the end effects are avoided [12]. The new
loaded axial propagation constant say,, thus found gives

, which in turn is used in (19), (20), and (28)
to plot the experimental interaction impedance characteristics
of the test helical SWS (Fig. 3). The repeatabilities in the
measurement on dispersion and interaction impedance are
found as 0.2% and 2%, respectively.

IV. RESULTS AND DISCUSSION

The structure under test consists of a helix (mean radius
1.09 mm, outer radius 1.18 mm, tape width 0.76 mm,
pitch angle 10.32 supported by three identical anisotropic

pyrolytic boron nitroide (APBN) (relative permittivity 5.1),
rectangular support bars (thickness0.59 mm) enclosed in
a metal envelope (radius 1.78 mm). The measurement is
carried out using an automated computer-aided measurement
setup (see Section III).

The experimental values of phase velocity closely agree
(within 0.5%) with the theoretical values predicted by
the author’s previously published analysis [15]–[17], over
a frequency range of 8–16 GHz (Fig. 2). As for interaction
impedance, the first-order NRP formula is improved upon—in
the first step, by taking into account the finite perturbation
of the axial electric field inside the dielectric-rod perturber,
the presence of a radial electric field, and the nonuniformity
of fields over the rod cross section, and in the next step,
also by taking into account the perturbation of the space
harmonics of orders 1, 2, and 3, besides the zeroth-
order fundamental, beyond which the results do not improve
appreciably further (see Section II). The measured values of
interaction impedance using the first-order formula and those
using the same but improved by the two correction factors, as
per the above steps, are compared with the theoretical values
(Fig. 3). The experimental values of interaction impedance
as found using the first-order formula appreciably differ
(maximum 30%) from the theoretical values found by
the author’s analysis reported elsewhere [16], [17], more so
at lower frequencies. However, the agreement becomes much
closer (within 2%) when both the correction factors are
taken into account (Fig. 3). It may be further noted that the
inclusion of the correction factor due to the space harmonics
lowers the value of the interaction impedance, though not to
an appreciable extent (Fig. 3), as also has been observed by
Wang et al. [9]. It is, however, felt that this factor would
cause an appreciable effect for large helix pitch angles, a
heavy loading of the helix, say, by a high permittivity or a
thick dielectric support, and at high operating frequencies.

V. CONCLUSIONS

This paper reports an automatic measurement setup for the
characterization of nonresonant structures. The background
NRP theory of measurement for this purpose is developed
from first principles. The formula deduced for interaction
impedance takes into account the perturbation of the axial field
inside the dielectric-rod perturber, the presence of a radial
electric field, the nonuniformity of fields over the rod cross
section, and also the perturbation of the space harmonics. The
experimental results are validated against theory. It may be
mentioned that there is a scope further to improve the results
on interaction impedance by eliminating the effect of TE-field
contributions in the measurement [12]. This could be done by
repeating the experiment by a metal rod in lieu of a dielectric-
rod perturber, and subsequently combining the results of the
dielectric- and metal-rod experiments [12]. It is hoped that
the NRP theory and the measurement technique based thereon
and developed in this paper, should be useful in the design
and characterization of helical structures—for instance, those
used by tube developers in wide-band TWT’s.
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APPENDIX A
INTEGRAL FORM OF RESONANT PERTURBATION EXPRESSION

For the zeroth-order nonazimuthally varying mode, one may
write for fields inside the perturber [12] as follows:

and

(A.1)

where and are the modified Bessel functions of the first
kind and of orders 0 and 1, respectively. The prime refers to
the perturbed quantities.

Substituting and from (A.1), and and , also
obtainable from (A.1), into (12) one may then write

(A.2)

Now, taking to be composed of the forward and backward
waves of the same amplitude which form a standing wave
in the cavity, one may represent as

(A.3)

from where one may write

(A.4)

and

(A.5)

Substituting (A.4) and (A.5) into (A.2), one gets

(A.6)

Assuming that the perturbing object is placed in a region of
the original field “frozen” in the unperturbed condition [12], as
discussed following (6), one may relate the perturbed quantity

, to the corresponding unperturbed quantity , both
taken at the structure axis , by a factor (15). The
expression for is given in Appendix B. With the help of
(15) and (A.1), one may then express (A.6) as

(A.7)

Now, putting the element of volume in (A.7)
and taking the integration extended over the volume of the
perturbing rod between and (rod radius) and

and (rod length), one obtains the RP expression
shown in (13).

APPENDIX B
EXPRESSIONS FOR , AND

Expression for may be found from the
boundary-value problem of the helix internally loaded by a
coaxial dielectric-rod perturber. For a nonazimuthally varying
mode, the relevant field expressions are [12]

(B.1)

(B.2)

(B.3)

(B.4)

where the subscript 1 refers to the region inside the dielectric
perturbing rod and subscript 2 refers to the region between
the rod and the helix treated as a “helical sheath” in the well-
known sheath-helix model. and are the field constants.

Now, if it is assumed that the dielectric-rod perturber is
“frozen” in the unperturbed condition, one may find
the unperturbed axial electric-field intensity at , as the
field intensity “stretched” up to . Thus, with the
help of (B.2), in which now has to be interpreted as zero
so that the field does not blow up at where the function

, one gets

(B.5)

The perturbed field intensity is obtained as the field
intensity taken at and is given with the help of
(B.1) as

(B.6)

is then identified with the help of (B.5) and (B.6) as

(B.7)

In order to find the ratio one may take help from
the following two boundary conditions at , the interface
between the dielectric rod and the free-space region outside
the dielectric

(B.8)

and

(B.9)

Substituting (B.1)–(B.4) into (B.8) and (B.9), one gets

and
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respectively, from which one may eliminate to get the ratio
which is equal to , as can be seen from (B.7). Thus

we have

The expression for and given by (17) and (18),
respectively, after evaluation of the definite integrals occurring
therein, are [12]

and

APPENIDX C
EXPRESSION FOR

Considerable simplification is achieved if it is assumed that
the quantity under the third bracket in the integrand of (24)
would not change from harmonic to harmonic, though now

is comprised of harmonics 1, say, in addition to the
zeroth-order fundamental as given by (23). Thus, in view of
(23), one may write the integral

(C.1)

The second integral of (C.1) vanishes in view of the orthogo-
nality relation of space harmonics, giving

(C.2)

where is given by (25), for the harmonics1 considered
in addition to the zeroth-order fundamental, and it is given by
(26) if the harmonics other than the zeroth-
order fundamental are considered. The ratio given by
(27) as required to find may be found from the tape-
helix analysis [16], [17]. The latter can be found assuming
a suitable tape-current distribution in the model. For instance,
it will be reasonable to assume that the amplitude of the tape-
surface current density taken parallel to the winding direction
is constant over the tape width and that its phase varies in
the direction of winding of the tape according to the phase

factor , where corresponds to a point moving
along the center line of the tape. Then directly from the tape-
helix analysis [15]–[17], the following relation is obtained for
a helix surrounded by a dielectric tube of an effective relative
permittivity into which the discrete dielectric support rods
for the helix could be azimuthally smoothed out, the whole
enclosed in a metal envelope:

(C.3)

where

and and being the helix pitch angle
and mean radius, respectively, andthe metal envelope radius.

and are the modified Bessel functions of the first and
second kinds of order , respectively, and the primes denote
their derivatives with respect to arguments.

, and hence , being independent of volume of the
perturber may be taken outside the integral in the RHS of
(C.2) enabling one to write

(C.4)

Therefore, in view of (C.4), the RP expression (13) gets
modified as (24) [as discussed, following (23)].

REFERENCES

[1] J. L. Putz and M. J. Cascone, “Effective use of dispersion shaping as
a design parameter in broad-band helix TWT circuits,” inIEEE Int.
Electron. Devices Meeting Tech. Dig., Washington, DC, Dec. 1979, pp.
422–424.

[2] P. Galuppy and M. D. Salvatore, “Evaluation of three techniques of
controlling phase velocity dispersion in helix TWT,” inProc. Int. Conf.
Microwave Tubes in Systems: Problems and Prospects, London, U.K.,
Oct. 1984, pp. 59–62.

[3] P. Galuppy and C. Lamesa, “A new technique for ultra-broad-band
high power TWT’s,”Military Microwave Conf. Proc., vol. MM-80, pp.
501–505, 1980.

[4] E. F. Belohoubek, “Helix support structure for ultra-wide-band
travelling-wave tubes,”RCA Rev., vol. 26, pp. 106–117, 1965.

[5] A. W. Horsley and A. Pearson, “Measurement of dispersion and inter-
action impedance characteristics of slow-wave structures by resonance



RAO et al.: NONRESONANT PERTURBATION MEASUREMENTS OF HELICAL SLOW-WAVE STRUCTURES 1593

methods,” IEEE Trans. Electron Devices, vol. ED-13, pp. 962–969,
1962.

[6] J. R. Legarra, “Measurement of microwave characteristics of helix
travelling wave circuits,” inIEEE Int. Electron Devices Meeting Tech.
Dig., Washington, DC, Dec. 1979, pp. 408–411.

[7] B. T. Maharaj and E. W. Schumann, “Automated measurement methods
to characterize travelling-wave tube slow-wave structure,”Elektron,
(South Africa), vol. 6, pp. 8–10, 1989.

[8] T. Onodera and K. C. Tucker, Optimum dimensions of perturbers for
measuring microwave characteristics of helix traveling wave circuits,”
in Proc. 4th Int. Symp. Recent Trends Microwave Technol., New Delhi,
India, Dec. 1993, pp. 422–425.

[9] P. Wang, R. G. Carter, and B. N. Basu, “An improved technique for
measuring the Pierce impedance of helix slow-wave structures,” inProc.
24th European Microwave Conf., vol. 2, Cannes, France, Sept. 1994,
pp. 998–1003.

[10] P. Wang, R. G. Carter, B. N. Basu, and A. K. Sinha, “A simple technique
for measuring the Pierce impedance of the helical slow-wave structures
for TWT’s,” presented at theITG Conf., Germany, 1995.

[11] C. W. Steele, “A nonresonant perturbation theory,”IEEE Trans. Mi-
crowave Theory Tech., vol. MTT-14, pp. 70-74, 1966.

[12] R. P. Lagerstrom, “Interaction impedance measurements by perturba-
tion of travelling waves,” Electron. Res. Laboratory, Stanford Univ.,
Stanford, CA, Rep. 7, 1957.

[13] E. T. Jaynes, “Advanced microwave theory I,” unpublished.
[14] J. R. Klander, “A method for measuring impedance in traveling-wave

tubes,” Bell Telephone Laboratories Memorandum, New York, NY,
MM-54-2144-20, 1954.

[15] A. K. Sinha, R. Verma, R. K. Gupta, L. Kumar, S. N. Joshi, P. K.
Jain, and B. N. Basu, “Simplified tape model of arbitrary-loaded helical
slow-wave structures of a traveling-wave tube,”Proc. Inst. Elect. Eng.,
vol. 139, pt. H, pp. 347–350, 1992.

[16] S. Ghosh, P. K. Jain, and B. N. Basu, “Rigorous tape analysis of
inhomogeneously loaded helical slow-wave structure,”IEEE Trans.
Electron Devices., to be published.

[17] S. Ghosh, “Analytical studies on inhomogeneously loaded helical struc-
tures for broad-band TWT’s,” Ph.D. dissertation, Dept. Electron. Eng.,
Banaras Hindu Univ., Varanasi, India, 1996.

[18] R. A. Waldran,Theory of Guided Electromagnetic Waves. New York:
Van Nostrand, 1970.

[19] S. Cook, R. Kompfner, and C. F. Quate, “Coupled helices,”Bell Syst.
Tech. J., vol. 35, pp. 127–178, 1956.

[20] V. N. Singh, B. N. Basu, B. B. Pal, and N. C. Vaidya, “Equivalent circuit
analysis of a system of coupled helix transmission line in a complex
environment,”J. Appl. Phys., vol. 54, pp. 4141–4146, 1983.

S. J. Raowas born in Kakinada, India, on October
23, 1973. He received the B.Tech degree in electron-
ics engineering from the Institute of Technology,
Banaras Hindu University (BHU), Varanasi, India,
in 1996.

His research interest includes high-power fast-
wave electron beam devices, particularly gyro-TWT
amplifiers and CAD/CAM. He has authored or co-
authored numerous research papers published in
journals and presented at various national confer-
ences.

S. Ghosh was born in Midnapur, India, in 1966.
He received the B.Sc. degree from Banaras Hindu
University (BHU), Varanasi, India, in 1991, and is
currently working toward the Ph.D. degree.

His research interest include analysis and model-
ing of TWT’s and its subassemblies.

P. K. Jain received the B.Tech. degree (in electron-
ics engineering) and the M.Tech. and Ph.D. degrees
(in microwave engineering), all from Banaras Hindu
University (BHU), Varanasi, India, in 1979, 1981,
and 1988, respectively.

In 1981, he joined the Centre of Research in Mi-
crowave Tubes (CRMT), Department of Electronics
Engineering, Institute of Technology, (BHU), as a
Lecturer, and is currently working there as a Reader.
His current areas of research and publication include
CAD/CAM and modeling of microwave tubes and

their subassemblies, high-power radiation from cyclotron resonance masers,
including gyro-TWT’s.

Dr. Jain is a fellow of the Institution of Electronics and Telecommunication
Engineers (India).

B. N. Basureceived the M.Tech. and Ph.D. degrees
from the Institute of Radiophysics and Electronics,
Calcutta University, Calcutta, India, in 1966 and
1976, respectively.

He had been associated with the Institute of
Radiophysics and Electronics, Calcutta, the Defence
Electronics Research Laboratory, Hyderabad, the
Indian Institute of Technology, Kharagpur, the Re-
gional Institute of Technology, Jamshedpur, and
the Central Electronics Engineering Research Insti-
tute (CEERI), Pilani. He is currently working as a

Professor and Coordinator at the Centre of Research in Microwave Tubes
(CRMT), Electronics Engineering Department, Banaras Hindu University
(BHU), Varanasi, India. He is also professionally associated with CEERI,
Pilani, as a Distinguished Visiting Scientist/Short-Term Consultant of Council
of Scientific and Industrial Research (CSIR), India, and has been seconded
by CSIR and the British Council to work at the University of Lancaster,
Lancaster, U.K., under an academic-link program. He has authored a book
entitled Electromagnetic Theory and Applications in Beam-Wave Electronics
(World Scientific, Singapore), and has appeared in the 14th edition ofMarquis
Who’s Who in the World. His areas of current interest and publications include
helix-TWT modeling, broad-banding of TWT’s, synthesis of electron guns,
and gyro-TWT amplifiers.


